Tonic pain experienced during locomotor training impairs retention despite normal performance during acquisition.

نویسندگان

  • Jason Bouffard
  • Laurent J Bouyer
  • Jean-Sébastien Roy
  • Catherine Mercier
چکیده

Many patients are in pain when they receive gait training during rehabilitation. Based on animal studies, it has been proposed that central sensitization associated to nociception (maladaptive plasticity) and plasticity related to the sensorimotor learning (adaptive plasticity) share similar neural mechanisms and compete with each other. The aim of this study was to evaluate whether experimental tonic pain influences motor learning (acquisition and next-day retention) of a new locomotor task. Thirty healthy human subjects performed a locomotor adaptation task (perturbing force field applied to the ankle during swing using a robotized orthosis) on 2 consecutive days. Learning was assessed using kinematic measures (peak and mean absolute plantarflexion errors) and electromyographic (EMG) activity. Half of the participants performed the locomotor adaptation task with pain on Day 1 (capsaicin cream around the ankle), while the task was performed pain-free for all subjects on Day 2 to assess retention. Pain had no significant effect on baseline gait parameters nor on performance during the locomotor adaptation task (for either kinematic or EMG measures) on Day 1. Despite this apparently normal motor acquisition, pain-free Day 2 performance was markedly and significantly impaired in the Pain group, indicating that pain during training had an impact on the retention of motor memories (interfering with consolidation and/or retrieval). These results suggest that the same motor rehabilitation intervention could be less effective if administered in the presence of pain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pain Induced during Both the Acquisition and Retention Phases of Locomotor Adaptation Does Not Interfere with Improvements in Motor Performance

Cutaneous pain experienced during locomotor training was previously reported to interfere with retention assessed in pain-free conditions. To determine whether this interference reflects consolidation deficits or a difficulty to transfer motor skills acquired in the presence of pain to a pain-free context, this study evaluated the effect of pain induced during both the acquisition and retention...

متن کامل

Effect of Tonic Pain on Motor Acquisition and Retention while Learning to Reach in a Force Field

Most patients receiving intensive rehabilitation to improve their upper limb function experience pain. Despite this, the impact of pain on the ability to learn a specific motor task is still unknown. The aim of this study was to determine whether the presence of experimental tonic pain interferes with the acquisition and retention stages of motor learning associated with training in a reaching ...

متن کامل

Facilitatory effects of electrical stimulation of the hippocampus on a one way active avoidance response in cats.

Effects of a low intensity electrical stimulation of the hippocampus (HiSt) on acquisition, performance and retention of a one-way active avoidance response (AAR) were studied in four groups of cats. The animals were first trained in avoiding an electric foot-shock signalled by a CS (500 Hz tone) presentation and then they were tested or retention until the response extinguished. The HiSt was a...

متن کامل

Experimental sleep fragmentation impairs spatial reference but not working memory in Fischer/Brown Norway rats.

Sleep fragmentation is a common symptom in sleep disorders and other medical complaints resulting in excessive daytime sleepiness. The present study seeks to explore the effects of sleep fragmentation on learning and memory in a spatial reference memory task and a spatial working memory (WM) task. Fischer/Brown Norway rats lived in custom treadmills designed to induce locomotor activity every 2...

متن کامل

7-Nitroindazole, a neuronal nitric oxide synthase inhibitor, impairs passive-avoidance and elevated plus-maze memory performance in rats.

The role of nitric oxide (NO) on cognitive performance in a modified elevated plus-maze (mEPM) and passive-avoidance (PA) task was investigated by using the NO synthase (NOS) inhibitor 7-nitroindazole (7-NI) and an NO precursor l-arginine. The interaction between the activation of N-methyl-d-aspartate (NMDA) receptors and NO synthesis on memory retention was also studied. 7-NI, l-arginine or MK...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 34 28  شماره 

صفحات  -

تاریخ انتشار 2014